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Linear instability of electromigration induced mass transport is studied as an intrinsic
mechanism of void nucleation and growth in interconnect lines. Heat conduction along the
conductor line and between the conductor line and surrounding materials is added to a
recent model, proposed by Korhonen.et al. (1993) for electromigration induced stress
evolution, to examine the role of thermomigration in linear instability of uniform mass
transport. The analysis shows that thermomigration is the leading driving force for
instability of electromigration-induced mass transport in interconnect lines. This theoretical
prediction seems to qualitatively agree with a recent experimental study. These results
suggest that thermomigration, which has been ignored in most previous studies, could
play a significant role in electromigration failure of interconnect lines. C© 2000 Kluwer
Academic Publishers

1. Introduction
Electromigration (EM) has been identified as one of the
major causes of failure of interconnect lines in large
scale integrated circuits [1–3]. Owing to continuous
scaling down in dimensions of typical integrated cir-
cuits, electric current density in interconnect lines is in-
creasingly high. As a result, current-induced directional
mass transport causes nucleation and growth of voids,
especially at flux divergences such as grain bound-
aries, interfaces and voids, eventually resulting in opens
and shorts in integrated circuits. This phenomenon has
largely limited further device miniaturization.

EM induced voiding can be understood as a growth
process of spatial non-uniformity of mass distribution
in conductor lines. Since a stable uniform mass trans-
port tends to suppress growth of spatial non-uniformity
whereas an unstable one tends to promote it, nucle-
ation and growth of voids are expected to have intrinsic
connection with instability of spatially uniform mass
transport. Although it has long been known that pre-
existing flux divergences can drastically accelerate EM
failure, it is unclear whether EM failure could occur
even in the absence of any preexisting flux divergence.
In fact, there are many physical phenomena in which
growth of spatial non-uniformity occurs as a result of
instability of spatially uniform state in an “ideal” mate-
rial without any preexisting defect. For instance, diffu-
sional spheroidization of continuous rods [4] and void
formation of epitaxially strained thin-films [5] provide
such examples. Therefore, it is of great interest to study
intrinsic instability of EM-induced mass transport in in-
terconnect lines without any preexisting defect or void.

In connection with this, it should be mentioned that
although EM induced mass transport in void-free ho-
mogeneous conductor lines has been studied previously
[6–8], the related stability issue has not been examined
at all. Motivated by these considerations, the present au-
thor have recently studied linear instability of uniform
mass transport in a defect-free homogeneous conductor
line [9]. It is found in [9] that thermomigration (TM)
is the leading driving force for linear instability, and
the linear instability of uniform mass transport emerges
in a defect-free homogeneous conductor when electric
current density and temperature are sufficiently high.
The study [9] revealed the “intrinsic” aspects of EM-
induced failure and the significant role of TM, both of
which have not been clearly recognized and addressed
in the literature. More recently, it has been noted that
theoretical results of [9] seem to be supported qualita-
tively by a recent experimental work on electric-current
induced failure at crack tip in thin-film conductors by
Bastawros & Kim [10], where these authors found that
“the crack-growth-mode failure of both the Al and Au
films are believed to be primarily controlled by Soret
diffusion” (thermomigration).

A major shortcoming of the previous model [9] is that
it has been based on a simplified continuity equation
used in [6–8] which excludes the effect of vacancy sinks
and sources in conductor lines. Recently, a new model
has been developed by Korhonenet al. [11] which takes
account of vacancy sinks and sources and then leads to
an essentially different continuity equation. Korhonen
et al ‘s model has gained considerable attention and
been widely regarded as a physically more reasonable
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model for EM-induced failure (see e.g. [12, 13]).
Hence, in the present paper, Korhonenet al ‘s model
is used to reexamine linear instability of EM-induced
uniform mass transport in a defect-free homogeneous
conductor line.

2. Basic equations
Consider a confined homogeneous conductor line ly-
ing along thex-axis. Let the vacancy concentration be
N(x, t), then the vacancy fluxJ is given by [1, 2, 6, 14]

J = −D
∂N

∂x
+ N D

kT
F (1)

wherek is the Boltzmann constant,T is the absolute
temperature,F is the driving force, andD is the diffu-
sion coefficient of vacancies as follows

D = D∗ exp[−Ea/(kT)] (2)

hereEa is the activation energy, andD∗ is a material
constant. The driving force is [1, 2, 14]

F = −∂µ
∂x
, µ = µ0+ Z∗qϕ −Äσ + Q∗ ln T (3)

whereµ is the chemical potential,µ0 is the reference
value,q is the element charge,Z∗ is the effective charge
coefficient,ϕ is the electrical potential,Ä is the atom
volume,σ is the mean stress, andQ∗ is the heat of trans-
port. Here, because there is no surface or bulk flux di-
vergence, surface and interface diffusions are excluded.

Following Korhonenet al. [11] (see also Clement
& Thompson [12] and Lloyd [13]), the vacancies are
assumed to be in equilibrium with the stress, then

N = N∗exp

[
Äσ

kT

]
(4)

whereN∗ is the equilibrium value when the stress van-
ishes. The vast majority of transported vacancies anni-
hilate at sinks. As a result, the number of lattice sites
is reduced and the atom concentration per unit length
decreases. Thus, the continuity equation is of the form
[11–13]

∂N

∂t
− ∂C

∂t
= −∂ J

∂x
(5)

whereC denotes the atom concentration. The second
term on the left represents the vacancy sink/source,
which has been ignored in some previous models [6–8].

It follows from (1), (3) and (5) that

∂N

∂t
= ∂

∂x

[
D
∂N

∂x

]
+ ∂

∂x

[
N D

kT

(
Z∗qρ j +Ä ∂σ

∂x

− Q∗

T

∂T

∂x

)]
+ ∂C

∂t
(6)

whereρ is the resistivity, andj the electric current.
For a uniform mass transport, the unperturbed elec-

tric current, stress, temperature, atom concentration and
vacancy concentration are constant along the conduc-
tor line. Using the subscript “0” to denote these con-
stants in the unperturbed state, the perturbed state is
expressed by

N = N0+1N(x, t), C = C0+1C(x, t)

j = j0+1 j (x, t), σ = σ0+1σ (x, t),

T = T0+1T(x, t) (7)

where1 denotes the variations. Thus, the linear per-
turbed equation of (6) is

1

D0

∂1N

∂t
− 1

D0

∂1C

∂t
= ∂21N

∂x2
+ ÄN0

kT0

∂21σ

∂x2

− Q∗N0

kT2
0

∂21T

∂x2
+
(

1− Ea

kT0

)
J0

D0T0

∂1T

∂x

+ Z∗qρ
kT0

[
j0
∂1N

∂x
+ N0

∂1 j

∂x

]
(8)

where the terms on the right represent the effects of self-
diffusion, stress diffusion, TM and EM, respectively,
and J0 is the uniform vacancy flux of the unperturbed
state given by

J0 = −D0
N0

kT0
Z∗qρ j0 > 0 (9)

On the other hand, it follows from (4) that

1N

N0
= Ä

kT0
1σ (10)

where, because the vacancy concentration depends
largely on the stress, the influence of temperature vari-
ation has been omitted [12]. In addition to (8) and (10),
other three equations are needed for five variations de-
fined in (7). They can be derived as follows.

2.1. Stress
For a confined conductor line, because any volume
change is not permitted, the change of the atom con-
centration is transformed into a change of the stress.
Hence, the variation of stress is proportional to the vol-
ume strain caused by the variation of atom concentra-
tion. Thus [11–13]

1σ = −B
1C

C0
(11)

whereB is an elastic modulus depending on the geom-
etry of the conductor line. On using (10) and (11),1C
and1σ can be expressed by1N as follows

1C = − kC0T0

BÄN0
1N, 1σ = kT0

ÄN0
1N (12)
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2.2. Electric current
The product of atom concentration and current density
must be constant throughout the conductor line. Thus,
we have

1 j

j0
= −1C

C0
= kT0

BÄN0
1N (13)

whereC0 is the atom concentration in the unperturbed
state.

2.3. Heat Conduction
Finally, temperature distribution along the conductor
line is described by the modified heat conduction equa-
tion given by [15, 16]

c
∂1T

∂t
= K

∂21T

∂x2
+ 2 j0ρ1 j − h1T, h > 0 (14)

wherec is the specific heat,K is the heat conductivity
of the conductor line, andh is a constant describing
heat dissipation through the surrounding materials at
the constant temperatureT∗. The linear equations (8),
(12, 13, 14) provide the basic relations for linear insta-
bility analysis.

3. Instability analysis
To identify the driving forces for linear instability, sev-
eral diffusion mechanisms of major interest are exam-
ined respectively.

3.1. Stress gradient-driven diffusion
Blech [17] found that stress gradient provides a back
diffusion to EM-driven void growth. On using (12), the
stress-gradient term on the right of (8) becomes

ÄN0

kT0

∂21σ

∂x2
= ∂21N

∂x2
(15)

Hence, the effect of stress diffusion is simply to double
self-diffusion. In particular, if only the stress diffusion
is considered, (8) and (12) give

−
[
h+ Km2+ 2cD0N0BÄ

kC0T0
m2
]

λ =
±
√[

h+ Km2+ 2cD0N0BÄ
kC0T0

m2
]2− 8cm2N0D0

kC0T0

[
BÄ(h+ Km2)− j 2

0ρQ∗

T0

]
2c

[
1+ kT0C0

N0ÄB

]
1

D0

∂1N

∂t
= 2

∂21N

∂x2
(16)

Let1N(x, t)= eλteimx, whereλ is a complex number
whose real part determines the rate of growth of the
perturbation, andm is a real wave-number. It follows
from (16) that

λ = −2D0m2[
1+ kT0C0

ÄBN0

] < 0 (17)

Hence, any perturbation will decay with time and then
the uniform mass transport is stable.

3.2. Thermomigration (TM)
Almost all previous works have ignored the role of TM
in EM failure. This is perhaps due to the fact that the
magnitude of TM flux is usually much smaller than
EM. However, it is seen from (6) and (8) that the driving
force for linear instability is determined by the gradient
of the flux, rather than the flux itself. In fact, as stated
in a recent experimental work by Bastawros & Kim
(1998), there is strong evidence that TM could play
a significant role in EM-induced failure in conductor
lines. Here, to study the role of TM, we first omit EM.
Thus, the Equation (8) becomes[

1+ kT0C0

N0ÄB

]
1

D0

∂1N

∂t
= 2

∂21N

∂x2
− Q∗N0

kT2
0

∂21T

∂x2

(18)

The model (5) [11–13] assumes that the effect of trans-
ported vacancies is to reduce the atom concentration,
but not to increase the vacancy concentration. There-
fore, the ratio (N0/C0) is usually so small compared to
unity that [11, 12]

kT0C0

N0ÄB
À 1 (19)

Thus, combining (13), (14) and (18) leads to a single
equation for1T . Let1T(x, t)=eλteimx, one can obtain
a second-order eigenequation forλ as

cλ2+
[
h+ Km2+ 2cD0N0BÄ

kC0T0
m2
]
λ

+ 2m2N0D0

kC0T0

[
BÄ(h+ Km2)− ρ j 2

0 Q∗

T0

]
= 0 (20)

It turns out that the rootλ is given by

which has positive real part when and only when

j 2
0ρQ∗

BÄhT0
> 1 (21)

The condition (21) indicates that the heat conduction
between the conductor line and the surrounding media
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(characterized by the constanth) is essential for TM-
driven stability. Here, it should be reminded that the
heat conduction along the conductor line is also taken
into account in the present model. However, the heat
conductivity K of the conductor does not enter the
condition (21) because the most unstable perturbations
are charactered by vanishingly small wavenumbers for
which the role of the heat conductivity along the con-
ductor line becomes less important. Indeed, it is ex-
pected that the heat conduction along the conductor
line could play a significant role when perturbations of
finite wavelength are considered.

Note that the balance between Joule heating and
heat conduction between the conductor line and the
surrounding materials in the unperturbed state gives

h = ρ j 2
0

T0− T∗
(22)

Substitution of (22) into (21) yields the condition for
TM driven instability as follows

Q∗ > BÄ
T0

T0− T∗
(23)

Hence, TM-driven instability occurs only if the value of
the heat of transport is sufficiently high. For instance,
if we take Q∗=1 ev (see Ho [18] and Christou [19]),
both sides of (23) have the same order of magnitude,
even though the value ofBÄ is larger than 1 ev and
then the instability condition (23) is likely to fail when
Q∗=1 ev.

3.3. Electromigration (EM)
Now, to isolate the role of EM, TM is excluded. Thus,
the Equation (8) becomes

1

D0

kC0T0

N0BÄ

∂1N

∂t
= 2

∂21N

∂x2

+
(

1− Ea

kT0

)
J0

D0T0

∂1T

∂x

+ Z∗qρ
kT0

[
j0
∂1N

∂x
+ N0

∂1 j

∂x

]
(24)

In a similar way, the indexλ can be obtained as

λ = −(A1+ A2+ i B1)±
√

(A1+ A2+ i B1)2− 4A1A2− i 2B2

2c
(25)

whereA1, A2, B1 andB2 are some non-negative num-
bers defined by

A1 = h+ Km2, A2 = 2cD0N0BÄ

kC0T0
m2,

B1 = mcJ0
C0

(
BÄ

kT0
+ 1

)
(26)

B2 = 2cm J0

[
2ρ j 2

0

T0C0

(
Ea

kT0
− 1

)
+ (h+ Km2)

C0

(
1+ BÄ

kT0

)]
Note that

(A1+ A2+ i B1)2− 4A1A2− i 2B2

=
[

A1+ A2+ i

[
B1− B2

(A1+ A2)

]]2

+
[

B1− B2

(A1+ A2)

]2

− 4A1A2− B2
1

In addition, it can be proved (see [9]) that for arbitrary
complex numberz and any strictly positive numberδ,
the inequality holds

|Re[
√

z]| ≤ |Re[
√

z+ δ]|
where the equality holds only when the right-hand side
is zero. In particular, the validity of the above inequality
for any complex numberz implies that

|Re[
√

z]| ≥ |Re[
√

z− δ]|
Using these results, it can be verified that the indexλ

with positive real part exists if and only if[
B1− B2

(A1+ A2)

]2

> 4A1A2+ B2
1 (27)

Further, it can be verified that the most unstable pertur-
bation is associated with vanishingly smallm. In this
case, the instability condition (27) becomes

cJ2
0

[
2

T0C0

Ea

kT0
+ 1

C0(T0− T∗)
BÄ

kT0

]
Ea

kT0

>
ρ j 2

0

(T0− T∗)3

D0N0BÄ

k

where we have used the relation (22) and the fact that
Ea/(κT0) À 1, (BÄ)/(κT0) À 1. Further, becauseEa
is negligible compared toBÄ, the above condition be-
comes

cD0

k2T0
(Z∗q)2ρ

N0

C0

Ea

kT0
>

T2
0

(T0− T∗)2
(28)

For instance, ifEa= 0.5 eV, Z∗ =−15, T0= 600 K,
ρ= 3µÄ cm, D∗ = 10−4cm2/s, andc= 3 J/cm3-K, the
right side of (28) is several order of magnitude larger
than its left side because that the ratio (N0/C0) is at least
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several order of magnitude smaller than unity. Hence,
EM-driven linear instability will not occur under typical
physical conditions.

Here, a comparison of (23) with (28) indicates that
TM provides the leading driving force for linear in-
stability of uniform mass transport. This suggests that
TM could play a significant role in EM-induced void-
ing. As stated in [9], this result does not conflict with
the known fact that the effect of TM on void motion
is negligible [18]. In fact, because Joule heating due
to current crowding [1, 15, 16, 20] causes an antisym-
metric temperature gradient at the void, TM promotes
vacancy motion towards the void and then can signif-
icantly change the shape and size of the void, even
though its effect on the motion of void as a whole is
negligible. As mentioned before, a recent independent
experiment study [10] on EM induced damage evolu-
tion in thin-film conductors appears to provide a con-
vincing support for the significant role of TM predicted
by the present model. Here, it should be stated that the
role of TM has not been addressed in the literature.
In particular, TM has been ignored in almost all re-
cent works on transgranular failure of narrow conduc-
tor lines [21–24]. On the other hand, in the spirit of the
present model, slit-like voids would cause extremely
high local temperature gradient as compared to what
circular voids could cause. It seems that this could help
us to understand the observed vital slit-like void growth
in the direction perpendicular to the conductor line.

4. Conclusions
Based on a modified form of Korhonenet al’s
model [11], linear instability of EM induced uniform
mass transport in a defect-free homogeneous conductor
line is studied. Among others, it is found that:

1) Consistent with their known role in void growth
in conductor lines, TM and EM are identified to be the
major intrinsic driving forces for instability of mass
transport. This indicates that the study of instability of
mass transport in a defect-free homogeneous conductor
line has the potential to identify intrinsic driving forces
for EM induced failure.

2) In qualitative agreement with a recent experi-
ment [10] on EM induced failure in conductor lines,
the present study reveals that TM plays the dominant
role in linear instability of uniform mass transport. This
result suggests that TM should be taken into account in
the study of EM induced void growth. In particular, this
provides a new insight into the study of transgranular
slit failure of bamboo-like conductor lines [21–24].

Finally, it should be stated that the present analysis
is limited to linearized infinitesimal instability. Strictly

speaking, it cannot be applied to finite perturbations,
such as a circular or slit-like void. Therefore, an in-
teresting topic for further work is nonlinear instability
of mass transport. It is expected that nonlinear anal-
ysis could provide useful information about, say, the
time-dependent evolution of unstable perturbations, as
well as the sensitivity of instability to local imperfec-
tions, such as a local debonding between the conductor
line and the surrounding materials which would signif-
icantly affect local stresses and heat concentration.
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